Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Chem Sci ; 15(14): 5211-5217, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577354

RESUMO

Indoles are privileged chemical entities in natural products and drug discovery. Indole-fused heterocycles, particularly seven-membered ones, have received increasing attention due to their distinctive chemical characteristics and wide spectrum of bioactivities. However, the synthetic access to these compounds is highly limited. Herein, we report a unique multicomponent reaction (MCR) for modular assembly of indole-fused seven-membered heterocycles. In this process, indole, formaldehyde and amino hydrochloride could assemble rapidly to yield indole-fused oxadiazepines, and another addition of sodium thiosulphate would furnish indole-fused thiadiazepines. The biological evaluation disclosed the promising anticancer activity of these compounds. Furthermore, this MCR could be applicable in the late-stage and selective modifications of peptides. Therefore, this work provides a powerful strategy for indole functionalization and valuable tool for construction of seven-membered heterocycles.

2.
Nano Lett ; 24(11): 3525-3531, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466128

RESUMO

Variegation and complexity of polarization relaxation loss in many heterostructured materials provide available mechanisms to seek a strong electromagnetic wave (EMW) absorption performance. Here we construct a unique heterostructured compound that bonds α-Fe2O3 nanosheets of the (110) plane on carbon microtubes (CMTs). Through effective alignment between the Fermi energy level of CMTs and the conduction band position of α-Fe2O3 nanosheets at the interface, we attain substantial polarization relaxation loss via novel atomic valence reversal between Fe(III) ↔ Fe(III-) induced with periodic electron injection from conductive CMTs under EMW irradiation to give α-Fe2O3 nanosheets. Such heterostructured materials possess currently reported minimum reflection loss of -84.01 dB centered at 10.99 GHz at a thickness of 3.19 mm and an effective absorption bandwidth (reflection loss ≤ -10 dB) of 7.17 GHz (10.83-18 GHz) at 2.65 mm. This work provides an effective strategy for designing strong EMW absorbers by combining highly efficient electron injection and atomic valence reversal.

3.
Foods ; 13(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38397526

RESUMO

Dextranase (EC 3.2.1.11) is primarily applied in food, sugar, and pharmaceutical industries. This study focuses on using a cold shock Escherichia coli expression system to express marine dextranase SP5-Badex; enzyme activity increased about 2.2-fold compared to previous expression. This enzyme was employed to produce sweet potato porous starch, with special emphasis on the pore size of the starch. The water and oil adsorption rates of the porous starch increased by 1.43 and 1.51 times, respectively. Extensive Fourier transform infrared spectroscopy and X-ray diffraction revealed that the crystal structure of the sweet potato starch was unaltered by enzymatic hydrolysis. The adsorption capacities of the porous starch for curcumin and proanthocyanidins were 9.59 and 12.29 mg/g, respectively. Notably, the stability of proanthocyanidins was significantly enhanced through their encapsulation in porous starch. After 2.5 h of ultraviolet irradiation, the free radical scavenging rate of the encapsulated proanthocyanidins remained at 95.10%. Additionally, after 30 days of sunlight exposure, the free radical scavenging rate of the encapsulated proanthocyanidins (84.42%) was significantly higher than that (24.34%) observed in the control group. These research findings provide substantial experimental evidence for preparing sweet potato porous starch using marine dextranase.

4.
Phys Chem Chem Phys ; 26(6): 4968-4974, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38230694

RESUMO

Based on the excellent piezoelectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) single crystals, a hole-doped manganite film/PMN-PT heterostructure has been constructed to achieve electric-field and light co-control of physical properties. Here, we report the resistivity switching behavior of Eu0.7Sr0.3MnO3/PMN-PT(111) multiferroic heterostructures under different in-plane reading currents, temperatures, light stimuli and electric fields, and discuss the underlying coupling mechanisms of resistivity change. The transition from the electric-field induced lattice strain effect to polarization current effect can be controlled effectively by decreasing the in-plane reading current at room temperature. With the decrease of temperature, the interfacial charge effect dominates over the lattice strain effect due to the reduced charge carrier density. In addition, light stimulus can lead to the delocalization of eg carriers, and thus enhance the lattice strain effect and suppress the interfacial charge effect. This work helps to understand essential physics of magnetoelectric coupling and also provides a potential method to realize energy-efficient multi-field control of manganite thin films.

5.
Angew Chem Int Ed Engl ; 63(14): e202319650, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38275283

RESUMO

Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light-polarization interactions at electron scale. Integrating ferroelectricity and long-lived afterglow emission in a single material would offer new possibilities for fundamental research and applications, however, related reports have been a blank to date. For the first time, we here achieved the combination of notable ferroelectricity and afterglow emission in an organic-inorganic hybrid material. Remarkably, the presented (4-methylpiperidium)CdCl3 also shows noticeable antiferroelectric behavior. The implementation of cationic customization and halogen engineering not only enables a dramatic enhancement of Curie temperature of 114.4 K but also brings a record longest emission lifetime up to 117.11 ms under ambient conditions, realizing a leapfrog improvement of at least two orders of magnitude compared to reported hybrid ferroelectrics so far. This finding would herald the emergence of novel application potential, such as multi-level density data storage or multifunctional sensors, towards the future integrated optoelectronic devices with multitasking capabilities.

6.
Sci Rep ; 14(1): 1920, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253623

RESUMO

Early detection of sepsis is key to ensure timely clinical intervention. Since very few end-to-end pipelines are publicly available, fair comparisons between methodologies are difficult if not impossible. Progress is further limited by discrepancies in the reconstruction of sepsis onset time. This retrospective cohort study highlights the variation in performance of predictive models under three subtly different interpretations of sepsis onset from the sepsis-III definition and compares this against inter-model differences. The models are chosen to cover tree-based, deep learning, and survival analysis methods. Using the MIMIC-III database, between 867 and 2178 intensive care unit admissions with sepsis were identified, depending on the onset definition. We show that model performance can be more sensitive to differences in the definition of sepsis onset than to the model itself. Given a fixed sepsis definition, the best performing method had a gain of 1-5% in the area under the receiver operating characteristic (AUROC). However, the choice of onset time can cause a greater effect, with variation of 0-6% in AUROC. We illustrate that misleading conclusions can be drawn if models are compared without consideration of the sepsis definition used which emphasizes the need for a standardized definition for sepsis onset.


Assuntos
Sepse , Humanos , Estudos Retrospectivos , Sepse/diagnóstico , Bases de Dados Factuais , Hospitalização , Unidades de Terapia Intensiva
7.
Protein Pept Lett ; 31(1): 43-60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38058092

RESUMO

BACKGROUND: Increasing evidence proves that long non-coding RNAs (lncRNAs) play a key role in the occurrence and development of colorectal cancer. However, the function and molecular mechanism of LINC01836 in CRC are still unknown. METHODS: The differentially expressed lncRNAs in colorectal cancer were obtained from the RNA sequencing data. The effects of LINC01836 on colorectal cancer cells were tested in in vitro experiments. The mechanism of LINC01836 action was investigated through western blot, RNA immunoprecipitation assay and luciferase reporter assay. Moreover, the xenograft mouse model was conducted to examine the effects of LINC01836 in vivo. RESULTS: In this study, we showed that LINC01836 was significantly elevated in colorectal cancer tissues and cells. Elevated LINC01836 expression significantly correlated with larger tumor size, positive lymph node metastasis, distant metastasis, advanced tumor-node-metastasis (TNM) stage, and poor prognosis. Furthermore, decreased expression of LINC01836 repressed proliferation, migration, and invasion in vitro and vivo, and high LINC01836 expression displayed the opposite effect. Further analysis revealed that LINC01836 could regulate the expression of SLC17A9 by competing with miR---1226-3p. Furthermore, down-regulation of LINC01836 or increased expression of miR-1226-3p markedly reversed the effects of SLC17A9 overexpression on colorectal cancer cells. CONCLUSION: This study showed that LINC01836 regulated the expression of SLC17A9 through sponge miR-1226-3p by acting as a competitive endogenous RNA (ceRNA), promoted the progression of colorectal cancer, and suggested a new prognostic biomarker and potential cancer treatment target for colorectal cancer.

8.
Angew Chem Int Ed Engl ; 63(2): e202313590, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37814153

RESUMO

The ability to generate and manipulate photoluminescence (PL) behavior has been of primary importance for applications in information security. Excavating novel optical effects to create more possibilities for information encoding has become a continuous challenge. Herein, we present an unprecedented PL temporary quenching that highly couples with thermodynamic phase transition in a hybrid crystal (DMML)2 MnBr4 (DMML=N,N-dimethylmorpholinium). Such unusual PL behavior originates from the anomalous variation of [MnBr4 ]2- tetrahedrons that leads to non-radiation recombination near the phase transition temperature of 340 K. Remarkably, the suitable detectable temperature, narrow response window, high sensitivity, and good cyclability of this PL temporary quenching will endow encryption applications with high concealment, operational flexibility, durability, and commercial popularization. Profited from these attributes, a fire-new optical encryption model is devised to demonstrate high confidential information security. This unprecedented optical effect would provide new insights and paradigms for the development of luminescent materials to enlighten future information encryption.

9.
Huan Jing Ke Xue ; 44(12): 7014-7023, 2023 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-38098424

RESUMO

Fertilizer reduction and efficiency improvement is an important basis for ensuring the safety of the agricultural ecological environment. Microorganisms are the key driving force for regulating the soil nitrogen and phosphorus cycle. Studying the nitrogen and phosphorus transformation function of rhizosphere microorganisms can provide a microbiological regulation approach for further improving the use efficiency of soil nitrogen and phosphorus. Based on the field micro-plot experiments of three typical farmland soils(phaeozem, cambisol, and acrisol), metagenomic sequencing technology was used to study the differences in functional genes and regulatory factors of maize rhizosphere microorganisms during soil nitrogen and phosphorus transformation. The results showed that the functional diversity of maize rhizosphere microorganisms was affected by soil type. The functional diversity of rhizosphere microorganisms in phaeozem and cambisol was mainly affected by water content and nutrient content, and that in acrisol was affected by total phosphorus(TP) and available phosphorus(AP). For soil nitrogen transformation, the gene abundance of related enzymes in the pathway of nitrogen transformation was the highest in the urease gene(ureC) and glucose dehydrogenase gene(gdh), which were 7.25×10-5-12.88×10-5 and 4.47×10-5-7.49×10-5, respectively. The total abundance of assimilatory nitrate reduction functional genes in acrisol was higher than that in phaeozem and cambisol, and the total abundance of functional genes related to other processes was the highest in cambisol. The abundance of functional genes encoding enzymes related to nitrogen metabolism was mainly driven by soil bacterial richness, total potassium(TK), and TP. For soil phosphorus transformation, the number of alkaline phosphatase genes(phoD) catalyzing organic phosphorus mineralization was 1093, and the number of acid phosphatase genes(PHO) was 42. The abundance of phoD was two orders of magnitude higher than that of PHO. In addition, fertilization had no significant effect on the abundance of phoD and PHO in the same soil type. Random forest analysis showed that the abundances of phoD and PHO were significantly affected by soil moisture, organic matter(OM), and total nitrogen(TN), but AP content had the greatest impact on PHO abundance. These results clarified the nitrogen and phosphorus transformation characteristics of maize rhizosphere microorganisms at the functional genomic level and enriched the molecular biological mechanism of the microbial nitrogen and phosphorus transformation function.


Assuntos
Rizosfera , Zea mays , Zea mays/metabolismo , Fósforo/metabolismo , Nitrogênio/análise , Solo , Genômica , Microbiologia do Solo , Fertilizantes/análise
10.
Small ; : e2306989, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032164

RESUMO

Hybrid organic-inorganic perovskite (HOIP) ferroelectric materials have great potential for developing self-powered electronic transducers owing to their impressive piezoelectric performance, structural tunability and low processing temperatures. Nevertheless, their inherent brittle and low elastic moduli limit their application in electromechanical conversion. Integration of HOIP ferroelectrics and soft polymers is a promising solution. In this work, a hybrid organic-inorganic rare-earth double perovskite ferroelectric, [RM3HQ]2 RbPr(NO3 )6 (RM3 HQ = (R)-N-methyl-3-hydroxylquinuclidinium) is presented, which possesses multiaxial nature, ferroelasticity and satisfactory piezoelectric properties, including piezoelectric charge coefficient (d33 ) of 102.3 pC N-1 and piezoelectric voltage coefficient (g33 ) of 680 × 10-3  V m N-1 . The piezoelectric generators (PEG) based on composite films of [RM3HQ]2 RbPr(NO3 )6 @polyurethane (PU) can generate an open-circuit voltage (Voc ) of 30 V and short-circuit current (Isc ) of 18 µA, representing one of the state-of-the-art PEGs to date. This work has promoted the exploration of new HOIP ferroelectrics and their development of applications in electromechanical conversion devices.

11.
Dalton Trans ; 52(44): 16406-16412, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37870776

RESUMO

Organic-inorganic hybrid perovskites (OIHPs) with dielectric switching functions have aroused comprehensive scientific interest, benefitting from their promising applications in sensors and information storage. However, to date, most of these materials discovered thus far possess a single function and are limited in their applicability, failing to meet the requirements of diverse applications. Moreover, the discovery of these materials has been largely serendipitous. Building multifunctional OIHPs with dielectric switching and semiconductors remains a daunting task. In this context, by introducing [C7H16N]+ as cations and in combination with lead halide with semiconducting properties, two OIHPs [C7H16N]PbI3 (1) and [C7H16N]PbBr3 (2) ([C7H16N]+ = (cyclopropylmethyl) trimethylammonium) have been successfully designed. They have dielectric switching properties close to 253 and 279 K and semiconducting behavior with band gaps of 2.67 and 3.22 eV. The phase transition temperature increased by 26 K through halogen substitution. In summary, our findings in this study provide insights into the application of the halogen substitution regulation strategy and open up new possibilities for designing perovskite semiconductors with dielectric switching functionality.

12.
Chem Sci ; 14(34): 9041-9047, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37655024

RESUMO

As an innovative form of stimulus-response materials, organic-inorganic hybrid phase transition materials have become a wonderful contender in the field of functional electronic equipment due to their versatile structure, intensive functions and straightforward preparation. However, the targeted regulation and optimization of the electrical/optical response, along with the establishment of regular structure-performance relationships, pose significant challenges in meeting the diverse demands of practical applications over an extended period. Herein, we conducted a systematic investigation into the role of lattice void occupancy in regulating phase transition temperature (Tp) and related optical/electrical bistability. By taking hybrid material [TMEA][Cd(SCN)3] featuring a flexible ammonium cation [TMEA]+ (TMEA = ethyltrimethylammonium) as the prototype, we successfully synthesized three phase transition materials, namely [DEDMA][Cd(SCN)3], [TEMA][Cd(SCN)3] and [TEA][Cd(SCN)3] (DEDMA = diethyldimethylammonium, TEMA = triethylmethylammonium, and TEA = tetraethylammonium), and the excellent regulation of the physical properties of these compounds was achieved through subtle engineering of void occupancy. More strikingly, [TEA][Cd(SCN)3] exhibits remarkable bistable properties in terms of dielectric and nonlinear optical responses (with second-harmonic generation intensity reaching 2.5 times that of KDP). This work provides a feasible avenue to reasonably customise organic-inorganic hybrid phase transition materials and finely adjust their intriguing functionalities.

13.
Indian J Orthop ; 57(9): 1452-1460, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37609008

RESUMO

Background: Regarding trochanteric hip fractures, one type of posterior coronal fragments was described as the "banana-shaped fragment", while the impact of the banana-shaped fragment on mechanical stability has not been further studied. The current study investigated the association between the banana-shaped fragment and mechanical complications after surgery. Methods: This retrospective cohort study included 273 patients treated by proximal femoral nail antirotation (PFNA) in the full analysis. The age, the sex, the fracture side, the follow-up time, the American Society of Anesthesiologists classification, the operators, the fracture classification, the tip-apex distance, the blade positions, the reduction quality and the bone mineral density were analyzed in relation to mechanical complications, through univariate and multivariate approaches. Results: Mechanical complications happened in 33 patients. The banana-shaped fragment (adjusted odds ratio 5.240, 95% CI 2.172 to 12.641; p < 0.001), the tip-apex distance and the reduction quality showed significant association with mechanical complications in both univariate and multivariate analysis. Moreover, for 118 patients with the banana-shaped fragment, we found that the use of wire cerclage couldn't significantly lower the rates of mechanical complications (p = 0.648). Conclusions: The banana-shaped fragment had a negative impact on mechanical stability of trochanteric hip fractures treated by PFNA. In the perioperative period, the BSF should be carefully evaluated, and its specific handling deserves further study.

14.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572302

RESUMO

MOTIVATION: Molecular docking is a commonly used approach for estimating binding conformations and their resultant binding affinities. Machine learning has been successfully deployed to enhance such affinity estimations. Many methods of varying complexity have been developed making use of some or all the spatial and categorical information available in these structures. The evaluation of such methods has mainly been carried out using datasets from PDBbind. Particularly the Comparative Assessment of Scoring Functions (CASF) 2007, 2013, and 2016 datasets with dedicated test sets. This work demonstrates that only a small number of simple descriptors is necessary to efficiently estimate binding affinity for these complexes without the need to know the exact binding conformation of a ligand. RESULTS: The developed approach of using a small number of ligand and protein descriptors in conjunction with gradient boosting trees demonstrates high performance on the CASF datasets. This includes the commonly used benchmark CASF2016 where it appears to perform better than any other approach. This methodology is also useful for datasets where the spatial relationship between the ligand and protein is unknown as demonstrated using a large ChEMBL-derived dataset. AVAILABILITY AND IMPLEMENTATION: Code and data uploaded to https://github.com/abbiAR/PLBAffinity.


Assuntos
Aprendizado de Máquina , Proteínas , Simulação de Acoplamento Molecular , Ligantes , Ligação Proteica , Proteínas/química
15.
J Med Chem ; 66(15): 10791-10807, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37498552

RESUMO

The development of histone deacetylase (HDAC) inhibitors for treating hematologic malignancies has been widely investigated, while their role in hepatocellular carcinoma (HCC) remains unexplored. In this study, we employed a scaffold-hopping design and a multicomponent synthesis approach to develop a novel series of 1,2,3,4-tetrahydrobenzofuro[2,3-c]pyridines as HDAC inhibitors. There were a total of 29 compounds achieved with flexible linkers and zinc-binding groups, wherein compound 12k was identified as a promising candidate with good HDAC inhibitory activity, pharmacokinetic profiles, and potency. It exhibited significant therapeutic efficacy in HCC cell lines (IC50 = 30 nM for Bel-7402) and xenograft models (76% inhibition for Bel-7402 xenografts, P.O. at 20 mg/kg, QOD, for 14 days) and was found to upregulate the acetylation of histone H3 and α-tubulin, leading to apoptosis and autophagy in HCC models. Molecular docking studies indicated a unique T-shaped conformation of 12k with the catalytic domain of HDAC1. Therefore, this work provides a new structure design for HDAC inhibitors and also offers a promising treatment for HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/química , Neoplasias Hepáticas/patologia , Simulação de Acoplamento Molecular , Apoptose , Piridinas/farmacologia , Piridinas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Histona Desacetilase 1/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
16.
Dalton Trans ; 52(30): 10415-10422, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37436427

RESUMO

The multifunctional tuning of solid-state dielectric switches constructed from organic-inorganic hybrid materials (OIHMs) has received great attention. In particular, molecular ferroelastics with dielectric phase transitions have considerable potential in the optical and electrical fields owing to their adjustable structures and physical features. However, it remains a challenge to effectively design ferroelastics with high phase transition temperature (Tc). We used [TTMA]2CdI4 (TTMA = tetramethylammonium, 1) as a template to continuously increase the molecular weight and change the structure of the hybrid material by modifying and extending the alkane chain in the cation. Therefore, a series of OIHMs were eventually developed: [TMEA]2CdI4 (TMEA = trimethylethylammonium, 2), [TMPA]2CdI4 (TMPA = trimethylpropylammonium, 3), and [TMIPA]2CdI4 (TMIPA = trimethyliso-propylammonium, 4). Among them, the Tc of ferroelastic 3 increased up to 387 K. DSC and temperature-related dielectric constant tests prove the occurrence of the phase transition for 1, 2, and 3. The structures further indicate that the phase transition is caused by the order-disorder cation motion. The extension of the alkyl chain greatly increases Tc and endows 3 with ferroelasticity at room temperature.

17.
Sci Rep ; 13(1): 8400, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225763

RESUMO

Intelligent reflecting surface (IRS) is a key enabling technology to reshape the electromagnetic propagation environment and enhance the communication performance. Current single IRS-aided or multiple distributed IRSs-aided wireless communication systems leave inter-IRSs collaboration out of consideration, and as a result, the system performance may be severely restricted. For cooperative double IRSs-aided wireless communication systems, dyadic backscatter channel model is widely used in the performance analysis and optimization. However, the impact of factors such as the size and gain of IRS elements is omitted. As a result, the performance quantification and evaluation are inaccurate. In order to avoid the above limitations, spatial scattering channel model is leveraged to quantify the path loss of the double reflection link in typical application scenarios of double IRSs-aided wireless communication systems. When the near-field condition is satisfied, the electromagnetic wave signal transmitted between IRSs is a spherical wave, which leads to high-rank channel and a lower signal to noise ratio. This paper considers the rank-1 inter-IRSs equivalent channel and derives the closed-form received signal power which reveals its relationship with the deployment of IRSs and the physical and electromagnetic properties of IRSs. Taking the impact of near/far-field effects of IRS on signal propagation further into consideration, the network configurations under which double cooperative IRSs can enhance the system performance are recognized. Simulation results show that whether double IRSs should be selected to assist in the communication between the transmitter and the receiver depends on practical network configurations, and the same number of elements should be assigned to the two IRSs to maximize the system performance if they are adopted.

18.
Exp Biol Med (Maywood) ; 248(12): 1043-1055, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37095701

RESUMO

Ovarian cancer is the most lethal gynecological tumor in women worldwide. FAM111B (family with sequence similarity 111 member B) is an oncoprotein associated with multiple cancers, but its biological functions in ovarian cancer remain elusive. In this study, FAM111B was overexpressed in ovarian cancer tissues and cell lines. Functional studies in vitro revealed that silencing of FAM111B inhibited ovarian cancer cell proliferation, invasion, and migration, as well as increased cell apoptosis. Furthermore, FAM111B silencing arrested the ovarian cancer cell cycle at the G1/S phase. Furthermore, western blot assays demonstrated that silencing of FAM111B resulted in downregulation of phospho-AKT (p-AKT) protein expression, as well as upregulation of p53 and caspase-1 protein expression. The xenograft animal model of ovarian cancer demonstrated that FAM111B silencing inhibited tumor growth, enhanced cell apoptosis, and inhibited Ki-67 and proliferating cell nuclear antigen (PCNA) protein expression in vivo. Conversely, the overexpression of FAM111B exhibited opposite effects on the ovarian cancer xenograft. It was previously established that inactivating AKT inhibited ovarian cancer progression. This study found that silencing of FAM111B inhibits tumor growth and promotes apoptosis by decreasing AKT activity in ovarian cancer. Caspase-1 and p53 signaling also influenced the function of FAM111B in SKOV3 cells. Collectively, our results demonstrate that silencing of FAM111B is a potential therapeutic strategy against ovarian cancer.


Assuntos
Neoplasias Ovarianas , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Apoptose/genética , Proliferação de Células/genética , Caspases/metabolismo , Caspases/farmacologia , Caspases/uso terapêutico , Movimento Celular/genética , Proteínas de Ciclo Celular/metabolismo
19.
Nanomaterials (Basel) ; 13(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36985959

RESUMO

Dextranase is widely used in sugar production, drug synthesis, material preparation, and biotechnology, among other fields. The immobilization of dextranase using nanomaterials in order to make it reusable, is a hot research topic. In this study, the immobilization of purified dextranase was performed using different nanomaterials. The best results were obtained when dextranase was immobilized on titanium dioxide (TiO2), and a particle size of 30 nm was achieved. The optimum immobilization conditions were pH 7.0, temperature 25 °C, time 1 h, and immobilization agent TiO2. The immobilized materials were characterized using Fourier-transform infrared spectroscopy, X-ray diffractometry, and field emission gun scanning electron microscopy. The optimum temperature and pH of the immobilized dextranase were 30 °C and 7.5, respectively. The activity of the immobilized dextranase was >50% even after 7 times of reuse, and 58% of the enzyme was active even after 7 days of storage at 25 °C, indicating the reproducibility of the immobilized enzyme. The adsorption of dextranase by TiO2 nanoparticles exhibited secondary reaction kinetics. Compared with free dextranase, the hydrolysates of the immobilized dextranase were significantly different, and consisted mainly of isomaltotriose and isomaltotetraose. The highly polymerized isomaltotetraose levels could reach >78.69% of the product after 30 min of enzymatic digestion.

20.
Ecotoxicol Environ Saf ; 253: 114671, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822062

RESUMO

Hexafluoropropylene oxide tetramer acid (HFPO-TeA) is an emerging environmental contaminant, with environmental presence but limited toxicological information. To investigate its potential developmental toxicities, various doses of HFPO-TeA exposure were achieved in chicken embryos via air cell injection, and the exposed embryos were incubated until hatch. Within 24 h of hatch, the hatchling chickens were assessed with electrocardiography and histopathology for toxicological evaluation. For mechanistic investigation, in ovo silencing of PPARα was achieved via lentivirus microinjection, then the morphological/functional endpoints along with protein expression levels of PPARα-regulated genes were assessed. HFPO-TeA exposure in chicken embryo resulted in developmental cardiotoxicity and hepatotoxicity. Specifically, decreased right ventricular wall thickness, increased heart rate and hepatic steatosis were observed, whereas silencing of PPARα resulted in alleviation of observed toxicities. Western blotting for EHHADH and FABPs suggested that developmental exposure to HFPO-TeA effectively increased the expression levels of both targets in hatchling chicken heart and liver tissue samples, while PPARα silencing prevented such changes, suggesting that PPARα and its downstream genes are playing critical roles in HFPO-TeA induced developmental toxicities.


Assuntos
Galinhas , Fluorocarbonos , Embrião de Galinha , Animais , Galinhas/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Fluorocarbonos/toxicidade , Coração , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...